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Robust Autocalibration of Triaxial Magnetometers
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Abstract— Self-calibration of a magnetometer usually requires
controlled magnetic environment as the calibration output can be
affected by field distortions from nearby magnetic objects. In this
article, we develop a two-stage method that can accurately self-
calibrate magnetometer from measurements containing anom-
alous readings due to local magnetic disturbances. The method
proceeds by robustly fitting an ellipsoid to measurement data via
L1-norm convex optimization, yielding initial model variables
that are less prone to magnetic disruptions. These are then
served as a starting point for robust nonlinear least-squares
optimization, which refines the magnetometer model to minimize
sensor estimation errors while suppressing heavy anomalies. Syn-
thetic and real experimental results are provided to demonstrate
improved accuracy of the proposed method in the presence of
outliers. We additionally show empirically that the method is
directly applicable to self-calibration of three-axis accelerometers.

Index Terms— Accelerometer, calibration, magnetometer, non-
linear least squares, robust optimization.

I. INTRODUCTION

MAGNETOMETER is a widely used sensor across a
range of tasks, including attitude control [1], [2], navi-

gation and mapping [3]–[5], and metal object detection [6]. It
is a constituent of an inertial measurement unit (IMU), which
is a key component for localization tasks.

A majority of recently manufactured magnetometers com-
prises three axes each of which detects the Hall voltage
that gives an indication of the magnetic field direction. The
relationship between the output reading and the input field
is affected by several factors, including soft and hard iron
effects and electrical sensor scaling and offset. While the
readers are encouraged to refer to the work of Vasconce-
los et al. [1] or Papafotis and Sotiriadis [7] for detailed
descriptions, we utilize the derivation from their work and
others [8]–[11] that the combined effect of these factors
yields the following linear system equation for a three-axis
magnetometer:

m j = y j + ε j = Ax̂ j + b+ ε j (1)

where m j ∈ R
3 is the measurement at time instant j , y j ∈ R

3

is the ideal noise-free model output at time j , x̂ j ∈ S2 is
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the corresponding true magnetic field direction vector at time
step j , A ∈ R

3×3 is the overall sensor transformation matrix,
b ∈ R

3 is the combined model offset, and ε j ∈ R
3 is the

measurement noise.
An autocalibration procedure typically refers to estimating A

and b of the sensor that best explains the measurements {m j }
obtained from arbitrary movements of the sensor. A classic
choice for such calibration has been ellipsoid fitting [12]—by
noting that each field direction x̂ j is ideally a unit vector, each
ideal model output y j must lie on a 3-D ellipsoid. Several
works [1], [8]–[11] have utilized this constraint to estimate
model variables by least-squares fitting an ellipsoid on the
measurement data.

The above approach faces two drawbacks—first, as reported
by Vasconcelos et al. [1], the minimized objective during
ellipsoid fitting is an algebraic error that is suboptimal when
considering the actual sensor estimation error �y j − m j�.
Second, the least-squares nature of the employed ellipsoid
fitting algorithm makes it vulnerable to anomalous measure-
ments arising from local magnetic disturbances due to nearby
ferromagnetic materials that do not move with the sensor.

While attempts have been made to mitigate the suboptimal-
ity issue of the ellipsoid fitting solution (e.g., by proposing to
minimize the sensor estimation error in [7]), less effort has
been made in improving robustness to measurement anom-
alies. As shown in Fig. 1, a few anomalies can deteriorate the
calibration accuracy, and it is onerous to simply remove these
through enforcing a more controlled calibration setting.

To address and resolve the aforementioned issues, we pro-
pose an autocalibration method, which finds an optimal
model minimizing the sensor estimation errors while main-
taining robustness to outlier data. The method comprises
two stages, robust L1-norm ellipsoid fitting on measure-
ments for initial sensor model estimation followed by the
refinement of model variables via robust nonlinear least-
squares optimization. Through the consideration of outliers,
we will show stable calibration accuracy and precision can be
achieved.

The main contributions of this article are as follows:
• development of a robust two-step autocalibration algo-

rithm for three-axis magnetometers, which yields state-
of-the-art calibration performance on simulation and real
data and extensive comparison of our method against
baseline and state-of-the-art algorithms.

• In addition, we demonstrate empirically that our
method is directly applicable to self-calibrating three-axis
accelerometers.

The rest of this article is structured as follows. Section I-A
reviews previous work in autocalibration of triaxial magne-
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TABLE I

SUMMARY OF DIFFERENT ALGORITHMS FOR SELF-CALIBRATING TRIAXIAL MAGNETOMETERS. (A, b) ARE THE SENSOR MODEL VARIABLES, x̂ j IS THE
MAGNETIC FIELD DIRECTION AT TIME j , AND m j IS THE ACTUAL MEASUREMENT AT THE CORRESPONDING TIME

tometers, and Section II illustrates our proposed method in
detail. Section III presents our procedures and discusses the
obtained results for both simulation and real experiments.
Conclusions are drawn in Section IV.

A. Related Work

As briefly stated in Section I, the most well-known self-
calibration algorithm for a three-axis magnetometer is the
least-squares ellipsoid fitting method [13], [14]. This method
uses the fact that the magnitude of each magnetic field remains
constant, leading to the sensor estimates ideally lying on a
3-D ellipsoid. Since geometric fitting of ellipsoid involves
nonlinear optimization [1], this method instead minimizes an
algebraic replacement of the original fitting objective that can
be solved through a single step of least squares. The method
benefits from easy implementation and fast computation, but
the obtained algebraic solution is suboptimal with respect to
the original geometric objective.

To alleviate the abovementioned issue, numerous works
have focused on improving the solution quality (hence cali-
bration accuracy). Kok and Schön [11] adopted semidefinite
programming (SDP) to obtain (with guarantee) the global
minimum of the algebraic cost, but this is still suboptimal
with respect to the geometric fitting error. Dorveaux et al. [8]
proposed to alternatively update the sensor variables and the
magnetic field directions every iteration to make the norm of
each field direction close to 1. The algorithm is efficient as it
solves a sequence of linear equations, but due to the way that
the sensor model is effectively initialized as A = I (identity

matrix) and b = 0 (zero vector) for iterative optimization,
the algorithm can yield suboptimal results (as will be shown
in Section III) if the degrees of soft and hard iron effects are
significant. Vasconcelos et al. [1] devised a two-step method,
whereby an initial sensor model is obtained through least-
squares ellipsoid fitting after which is refined via nonlinear
optimization to make the norm of each field direction close
to 1. This method makes no initial assumption but does not
consider potential outlier measurements.

More recently, Papafotis and Sotiriadis [7] proposed to min-
imize the sum of sensor estimation errors instead of geomet-
ric ellipsoid fitting errors. This method alternatively updates
sensor model variables and 3-D magnetic field directions,
assuming that each field direction is of unit norm. As will
be demonstrated in Section III, their objective makes a further
improvement to the previous work minimizing ellipsoid fitting
errors. Nevertheless, this algorithm also employs the same
restrictive initialization of the sensor model as in [8] despite
its local convergence, and it lacks consideration of anomalies,
which can potentially deteriorate calibration accuracy.

A summary of previous works can be found in Table I.

II. PROPOSED METHOD

In this section, we illustrate our two-stage method for robust
autocalibration of a three-axis magnetometer. The algorithm
has been designed to consider anomalous sensor readings
without requiring additional information, such as initial model
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estimates. One may find Table II useful for looking up utilized
symbols throughout this section.

A. Canonical Form of the Solution

As noted by Wu and Shi [10], for an optimal model (A, b)
and the corresponding field directions {x̂ j }, any orthogonal
matrix Q can yield an equivalent model (AQ�, b) with field
directions {Qx̂ j } since Ax̂ j = (AQ�)(Qx̂ j ). To resolve this
solution ambiguity, we adopt a similar approach to [8] and
[10], forcing A to be an upper triangular matrix K during
optimization. Furthermore, we additionally force the diagonal
entries to be positive when outputting the model variables.

To see how above removes solution ambiguity, first, note
that the RQ decomposition A = KQ (where K is an upper tri-
angular matrix and Q is an orthogonal matrix) is unique so long
as each diagonal entry of K is set positive [15]. By forcing A
to be upper triangular with positive diagonal entries, the entire
solution space {AQ�} spanned by an orthogonal matrix Q (i.e.,
the Grassmann manifold [16]) is uniquely turned into K.

B. Data Normalization

For numerical stability of our algorithm, we have applied
standard data normalization techniques from [17]—i.e., each
measurement is subtracted by the median of the measurement
set {m j } and then divided by its standard deviation prior to
feeding through the algorithm. The solution obtained from the
algorithm is then reverse-normalized.

C. Robust L1-Norm Ellipsoid Fitting

In this section, we introduce and apply Calafiore’s L1-norm
ellipsoid fitting algorithm [12] to obtain an initial sensor model
robust to outliers.

As illustrated in the literature, the fact that each field
direction x̂ j lies on a unit 3-D sphere constrains each model
output y j to lie on a 3-D ellipsoid that is

�x̂ j�22 = �K−1(y j − b)�22 = 1 (2)

leading to

y�j Cy j + 2d�y j + e = 0 (3)

where C, d, and e are defined up to scale as C � K−�K−1,
d � −K−�K−1b, and e � b�K−�K−1b− 1. By introducing a
scale factor μ, these can be written as the following equations:

C := μK−�K−1

d := −μK−�K−1b = −Cb

e := μ(b�K−�K−1b− 1) = −b�d− μ. (4)

In an ideal noiseless environment, each m j = y j yields
one unique ellipsoid equation (3), and therefore, one can
solve exactly for the model variables given nine observa-
tions or more. In practice, however, measurement errors plague
such exact estimation, and one needs to account for these
errors.

As reviewed by Calafiore [12], minimizing the geometric
error �y j −m j�22 between each measurement and the closest

TABLE II

LIST OF MATHEMATICAL SYMBOLS USED THROUGHOUT THIS ARTICLE

point on the ellipsoid requires an iterative solver with good
initialization. Instead, a widely used alternative is to minimize
an algebraic fitting error

g j (C, d, e) := m�j Cm j + 2d�m j + e (5)

=
[

m j

1

]� [
C d

d� e

] [
m j

1

]

subject to C � 0 for valid formation of an ellipsoid. Mini-
mizing

∑N
j=1�g j�22 yields the L2-norm least-squares solution

without need for initial variables, but due to its nature of
squaring error distances, it is susceptible to anomalous data,
as shown in Fig. 1(a).
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Algorithm 1 L1-Norm Ellipsoid Fitting Algorithm for Estima-
tion of Sensor Variables (A, b) and Magnetic Field Directions
{x̂ j }

Inputs: measurements {m j }
1: Solve the semidefinite program (6) proposed by

Calafiore [12] using SeDuMi [18] and obtain C,
d, e.

2: b←−C−1d
3: μ←−b�d − e
4: K←√μ chol(C)−1

5: for j = 1, . . . , N do
6: x̂ j ← K−1(m j − b)
7: x̂ j ← x̂ j/�x̂ j�2
8: end for

Outputs: K, b, {x̂k}

In order to gain robustness to outliers, Calafiore [12] pro-
posed to minimize

∑N
j=1�g j�1 by formulating it as a form

of SDP [19], whose global minimum can be found using a
convex optimization algorithm. To briefly rederive the SDP
form, minimizing

∑N
j=1�g j�1 is equivalent to minimizing∑N

j=1 γ j subject to γ j > �g j�1∀ j . Note that this inequality
constraint can be replaced by a pair of constraints γ j > g j

and γ j > −g j . Finally, adding the constraint trace(C) = 1 for
enforcing C � 0 (positive definiteness for an ellipsoid) yields
a semidefinite program

arg min
{γ j },C,d,e

N∑
j=1

γ j

s.t. γ j − g j (C, d, e) > 0 ∀ j = 1, . . . , N

γ j + g j (C, d, e) > 0 ∀ j = 1, . . . , N

γ j > 0 ∀ j = 1, . . . , N

trace(C) = 1 (6)

where g j is a function of C, d, and e as defined in (5). We have
used Sturm’s SeDuMi [18], an open-source semidefinite pro-
gramming solver, to obtain the global minimum. After the
optimal ellipsoid variables (C, d, e) are obtained, these can be
used to retrieve the sensor model variables (K, b) and the field
directions {x̂ j }, as shown in Algorithm 1. (chol(C) denotes the
Cholesky decomposition [20] of C.)

Despite the yielded solution being a global minimum, it can
incur bias as the minimized objective is not a physically
meaningful quantity [21]. Hence, an additional step is required
to better refine the solution, for instance, by minimizing the
sum of sensor estimation errors �y j −m j�.

D. Robust Refinement of Sensor Variables and Field
Directions

After an initial sensor model and 3-D field directions are
obtained from Section II-C, they are further jointly refined
to minimize a geometrically meaningful sensor estimation
error. One thing to note is that each field direction must
be normalized at all times during optimization. Such can be

Fig. 1. Ellipsoid fitting results on 454 data points obtained when calibrating
near a stapler (MS1 from Table III); 442 blue dots denote inlier data points
and 12 red crosses are anomalies. (a) Standard least-squares (L2) solution
yielding a visually incorrect model even from <3% outlier proportion. On the
other hand, the L1-norm solution in (b) is not so affected by the presence of
outliers.

simultaneously handled by employing a robust nonlinear least-
squares algorithm and incorporating a manifold optimization
framework on top.

Our complete algorithm chart for sensor refinement can be
found in Algorithm 2.

1) Problem Formulation: At time j with the field direction
x̂ j ∈ S2, the sensor estimation error r j between the model
estimate (Kx̂ j + b) and the measurement (m j ) is defined as

r j (k, b, x̂ j ) := Kx̂ j + b−m j (7)

where k ∈ R
6 denotes a minimal representation of the upper

triangular matrix K, as shown in Table II.
As shown in Fig. 2, minimizing a simple L2-norm objective∑N
j=1�r j (k, b, x̂ j )�22 opens vulnerability to outlier data that

can arise from versatile calibration conditions (see [22] for
discussions). We therefore encapsulate r j (k, b, x̂ j ) with a
robust kernel ρ : R→ R such that we solve

min
k,b,{x̂ j }

∑
j∈�t

ρ
(�r j (k, b, x̂ j )�22

)
s.t. �x̂ j�2 = 1 ∀ j = 1, . . . , N. (8)

This effectively discourages outlier data from changing the
sensor model significantly.

2) Robust Kernels: An ideal kernel ρ(·) would effectively
disregard outliers while preserving the behavior of the L2
norm for the inliers. In practice, several choices exist [23],
and we have tested four well-known selections, namely L1,
Huber, Cauchy and Geman–McClure (GM) kernels defined as
follows:

ρL1(s) =
√

s (9)

ρHuber(s) =
{

s, if s ≤ τ 2

2
√

s − 1, if s > τ 2 (10)

ρCauchy(s) = τ 2 log
(

1+ s

τ 2

)
(11)

ρGM(s) = τ 2

τ 2 + s
(12)

where s is the L2-norm cost and τ is the width (or radius)
of the inlier-classified region. Note that all these kernels
are second-order differentiable and have varying degrees of
robustness, as shown in Fig. 2.
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Fig. 2. Visualization of the robust kernels listed in Section II-D2. The
standard L2-norm kernel yields higher cost for residuals with larger error,
thus being vulnerable to outliers not appropriately fitting the model. On the
other hand, other kernels put less emphasis on larger residuals, gaining more
robustness to outliers in exchange for creating more local minima due to lack
of gradients (hence requiring a better initial solution).

3) Robustified Second-Order Subproblem: If we define a
variable set ζ := [k; b; x̂1; . . . ; x̂n] and the corresponding
update step as �ζ , the second-order surrogate cost function
surface q(�ζ) used by a second-order optimizer can be
defined as

∑
j∈�t

ρ
(�r j (ζ +�ζ)�22

) ≈ N∑
j=1

ρ
(�r j (ζ)+ J j�ζ�22

)

= const+ g��ζ + 1

2
�ζ�H�ζ =: q(�ζ) (13)

where J j := ∂r j (ζ)/∂ζ is the Jacobian of residual r j (ζ) at ζ

and g and H are the gradient and Hessian of the minimized
objective (8) at ζ .

For the Gauss–Newton algorithm, one simply needs to
minimize q(�ζ) with respect to �ζ in each iteration. Dif-
ferentiating (13) and setting the derivative q (�ζ) = 0 for
optimality yields �ζ = −H−1g. For the Levenberg–Marquardt
(LM) algorithm [24], [25], there is an additional penalty term
implicitly controlling the size of the update step. We solve

arg min
�ζ

q(�ζ)+ λ��ζ�22 (14)

where the last term penalizes the size of the update step,
implicitly setting a trust region within which the objective
surface can be “trusted” as quadratic. The augmented update
equation for �ζ is

�ζ = −(H+ λI)−1g. (15)

The damping factor λ is adjusted in each iteration to reflect
the size of this trust region—if the objective surface is mostly
quadratic, then λ is decreased, behaving more like the standard
Newton-based method. On the other hand, if the objective
is not so quadratic, then λ is increased, discouraging large
(potentially inaccurate) updates and more following down the
route of gradient descent. g and H are derived in Section II-D4.

4) Deriving Gradient and the Gauss–Newton Matrix: For
brevity of notations, we additionally define r j := r j (ζ),
ρ := ρ(�r j�22) (i.e., the first-order derivative of ρ), and
ρ := ρ(�r j�22) (the second-order derivative).

The gradient of (8) denoted as g can be written as

g := ∂

∂ζ

N∑
j=1

ρ
(�r j (ζ)�22

)

= 2
N∑

j=1

ρ
[
∂r j

∂ζ

]�
r j =: 2

N∑
j=1

ρJ�j r j (16)

where J j ∈ R
3×(9+3n) is the Jacobian of the residual r j

J j :=
[

∂r j

∂k

∂r j

∂b

∂r j

∂ x̂1
· · · ∂r j

∂ x̂n

]
. (17)

By noting from [26] that vec(AXB) = (B� ⊗A) vecX, we can
write Kx̂ j = vec(Kx̂ j ) = (x̂�j ⊗ I) vec(K) = (x̂�j ⊗ I)�k,
yielding

∂r j

∂k
= (

x̂�j ⊗ I
)
� (18)

∂r j

∂b
= I (19)

∂r j

∂ x̂l
=

{
K, if j = l

0, otherwise.
(20)

The Hessian H := ∂2 f /∂ζ2 is then

H := 2
N∑

j=1

2ρ
(
J�j r j r�j J j

)+ ρJ�j J j + ρ
[

∂J j

∂ζ

]�
r j

≈ 2
N∑

j=1

J�j
(
ρ + 2ρr j r�j

)
J j (21)

where the approximation discards the second-order derivative
and is also known as the Gauss–Newton matrix [22].

5) Trigg’s Correction for the Robust Norm Implementa-
tion: While it is possible to compute (21) naively, Triggs
et al. [27] showed appropriate reweighting of the nonrobust
residual vectors {r j } and the corresponding Jacobians {J j }
allows employment of any second-order optimizer to solve
the robust problem (8). More specifically, as illustrated by
Agarwal et al. [22], one can compute reweighted residuals
{r̃ j } and Jacobians {J̃ j } as

r̃ j :=
√

ρ

1− α j
r j , (22)

J̃ j :=
√

ρ
(

1− α j
r j r�j
�r j�22

)
J j (23)

where α j is a solution of

1

2
α2

j − α j − ρ

ρ
�r j�22 = 0 (24)

for all j = 1, . . . , N . It is then straightforward to see

g = 2
N∑

j=1

ρJ�j r j = 2
N∑

j=1

J̃�j r̃ j (25)

H ≈ 2
N∑

j=1

J�j
(
ρ + 2ρr j r�j

)
J j = 2

N∑
j=1

J̃�j J̃ j . (26)
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Fig. 3. Illustration of the Riemannian manifold optimization technique for
a field direction vector x̂ j ∈ S2. First, the Jacobian with respect to x̂ j is
projected to the tangent space of x̂ j , which can be regarded as drawing a
flattened map of gradients. Second, an update is made along the tangent space.
Finally, the updated field is retracted back to the unit sphere through vector
normalization.

6) Manifold Optimization: We are still left with the problem
of enforcing �x̂ j�2 = 1 for each field direction vector x̂ j .
While some prior works have considered relaxing the con-
straint by adding ν(�x̂ j�2− 1)2 or ν(�x̂ j�22− 1)2 as a penalty
term [8] for some ν ∈ R

+, this does not strictly guarantee
each field vector to be unit normed unless ν → ∞. Instead,
we apply a Riemannian manifold optimization framework [16]
(also known as local parameterization [22]) to consider the 3-
D spherical manifold of the field vectors. As the mathematical
derivations are well illustrated in Absil et al.’s book [16],
we just summarize the implementation details next.

First, the Jacobian with respect to each field x̂ j is projected
to the tangent space at x̂ j . If we define such portion of Trigg’s
Jacobian J̃ as J̃ j,x̂ j (from the 10th column of J̃ to the end),
the projected Jacobian is

J̃ j,x̂ j ← J̃ j,x̂ j

(
I− x̂ j x̂�j

)
. (27)

This ensures zero gradient along the field vector x̂ j , preventing
degenerate updates along the current field direction.

Second, a penalty term proposed by Okatani et al. [28] is
added to the LM subproblem (14) to ensure that updates are
made along the tangent space. More specifically, the modified
subproblem becomes

arg min
�ζ

q(�ζ)+ λ��ζ�22 + β

N∑
j=1

�x̂ j�x̂ j�22 (28)

which can be solved through least-squares formulation per
iteration. Solving (28) yields the augmented solution

�ζ = −(H+ λI+ β D)−1g =: −H̃−1g (29)

where D is a block-diagonal matrix defined as⎡
⎢⎢⎢⎣
0

D1
. . .

DN

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
0

x̂1x̂�1
. . .

x̂N x̂�N

⎤
⎥⎥⎥⎦ . (30)

The first block is 0 as no manifold constraint is applied to
p := [k; b]. In our implementation, β is set to 1.

Fig. 4. Structures of the derivative matrices used during refinement of sensor
variables. The original Jacobian and Hessian matrices are sparse, as each
residual r j only depends on the corresponding field vector x̂ j and not the
others. In Fig. 4(a), the left part in black corresponds to Jp := [Jk,Jb], and
the right block diagonal part in green corresponds to Jx̂ := [Jx̂1

, · · · ,Jx̂N
].

The approximate Hessian (Gauss–Newton JTJ) matrix yielded from J has a
special partly block diagonal structure, as shown in Fig. 4(b). Naively inverting
Fig. 4(b) requires O(N3) computations, where N is the number of data points.
By using the Schur complement trick in Section II-D7, a reduced system of
9× 9 is formed as shown in Fig. 4(c) [see the left-hand side of (33)] with only
O(N) computations, improving the per-iteration efficiency of the refinement
step. (a) Original Jacobian. (b) Original JTJ. (c) Reduced JTJ.

Finally, the updated field direction vector x̂ j +�x̂ j , which
no longer lies on the unit 3-D sphere, is retracted back to its
original manifold through normalization

x̂ j ← x̂ j +�x̂ j

�x̂ j +�x̂ j�2 . (31)

These procedures are visually shown in Fig. 3.
7) Schur Complement Trick for Efficient Implementation: In

this section, we illustrate the well-known Schur complement
trick [27] for efficient implemention of model refinement. As
each residual r j only depends on that particular time’s field
direction x̂ j , J j contains many zeros as shown in Fig. 4(a),
leading to a largely sparse Gauss–Newton matrix, as shown
in Fig. 4(b). This allows use of the Schur complement
trick [27] for efficient computation of (29).

If we define p := [k; b], then (29) can be written as⎡
⎢⎢⎢⎣
H̃p,p Hp,x̂1 · · · Hp,x̂N

H�p,x̂1
H̃x̂1,x̂1

...
. . .

H�p,x̂N
H̃x̂N ,x̂N

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

�p
�x̂1

...
�x̂N

⎤
⎥⎥⎥⎦ = −

⎡
⎢⎢⎢⎣

gp
gx̂1
...

gx̂N

⎤
⎥⎥⎥⎦ .

Note that the bottom-right segment of H̃ is block-diagonal and
the off-diagonals are not tilded as they are not augmented
by the diagonal terms λI and D in (29). By further defining
x̂ := [x̂1; · · · ; x̂N ], above can be written as[

H̃p,p Hp,x̂
H�p,x̂ H̃x̂,x̂

] [
�p
�x̂

]
= −

[
gp
gx̂

]
, (32)

where H̃x̂,x̂ ∈ R
3N×3N is the aforementioned block diagonal

matrix with each block being 3 × 3. Solving this naively
requires O((9 + 3N)3) = O(N3) computation due to the
inversion of H̃. However, if we write (32) as a system of linear
equations, (32) yields(

H̃p,p − Hp,x̂H̃
−1
x̂,x̂H

�
p,x̂

)
�p = −gp + Hp,x̂H̃

−1
x̂,x̂gx̂ (33)

H̃x̂,x̂�x̂ = −gx̂ − H�p,x̂�p (34)

which can be solved sequentially. Since the dimension of
H̃p,p ∈ R

9×9 is smaller than H̃x̂,x̂ (assuming N > 3), the com-
putation bottleneck is down to inverting H̃x̂,x̂. Since the inverse
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Algorithm 2 Robust Nonlinear Optimization of Sensor Intrin-
sics (K, b) and 3-D Field Directions {x̂ j }

Inputs: initial sensor model (K, b), field directions {x̂ j }
and measurements {m j }

1: Initialize damping factor λ← 10.
2: fbest ←∑N

j=1 ρ(�Kx̂ j + b−m j�22)
3: repeat
4: Initialize derivatives gp ← 0 and Hp,p ← 0.
5: for j = 1, . . . , N do
6: r j ← Kx̂ j + b−m j

7: Compute J j from Sec. II-D4
8: Obtain α j by solving (24)
9: Compute r̃ j from (22)

10: Compute J̃ j = [J̃ j,p, J̃ j,x̂1, · · · , J̃ j,x̂N ] from (23)
11: Retrieve J̃ j,x̂ j from J̃ j .
12: J̃ j,x̂ j ← J̃ j,x̂ j (I− x̂ j x̂�j )

13: fbest← fbest + ρ(�r j�22)
14: gx̂ j ← 2J̃�j,x̂ j

r̃ j

15: gp ← gp + 2J̃�j,pr̃ j

16: Hx̂ j ,x̂ j ← 2J̃�j,x̂ j
J̃ j,x̂ j

17: D j ← x̂ j x̂�j (manifold constraint)
18: Hx̂ j ,x̂ j ← Hx̂ j ,x̂ j + D j

19: Hp,x̂ j ← 2J̃�j,pJ̃ j,x̂ j

20: Hp,p ← Hp,p + 2J̃�j,pJ̃ j,p
21: end for
22: gx̂ ← [g�x̂1

, · · · , g�x̂N
]�

23: Hx̂,x̂ ← blkdiag(Hx̂1,x̂1, · · · ,Hx̂N ,x̂N ) (MATLAB)
24: Hp,x̂ ← [Hp,x̂1, · · · ,Hp,x̂N ]
25: repeat
26: H̃p,p ← Hp,p + λI (trust region damping)
27: H̃x̂,x̂ ← Hx̂,x̂ + λI (trust region damping)
28: Compute �p from (33) and retrieve �K and �b.
29: Compute �x̂ from (34) and retrieve {�x̂ j }.
30: f ←∑

j ρ(�r j (K+�K, b+�b, x̂ j +�x̂ j )�22)
31: if f < fbest (i.e. found a better model) then
32: [K, b] ← [K+�K, b+�b] (update model)
33: x̂← x̂ +�x̂ (update fields)
34: λ← max(λ/10, 10−14) (larger trust region)
35: break
36: else
37: λ← min(10λ, 1014) (smaller trust region)
38: end if
39: until max. # trials reached
40: until max. # iterations or function tolerance reached

Outputs: sensor model (K,b) and field directions {x̂ j }

of a block diagonal matrix can be computed from the inverses
of individual blocks, this is only an O(N × 32) = O(N)
computation for our case.

For empirical verification, we compared the runtime of our
Schur complement trick implementation against that of a naive
robust LM algorithm. For 1000 measurements, the algorithm
incorporating the Schur complement trick reported 46–60 ms
per iteration, which is a 4.5–7 factor of speed up when
compared with the naive version reporting 288–320 ms.

III. EXPERIMENTAL RESULTS

We tested our algorithm by comparing its performance
against baseline and state-of-the-art self-calibration algorithms
on synthetic and real magnetometer measurements. For this
purpose, we have tested variants of our method proposed in
Section II by employing different robust kernels for refinement
(L1, GM, Huber, and Cauchy) and reimplemented all the
algorithms listed in Table I.

All the experiments were carried out in MATLAB R2019b
on a PC with an AMD R2700X CPU and 32-GB DDR4 RAM.

A. Algorithm Settings

For a fair comparison, we set each iterative algorithm’s
maximum number of iterations to 300 and the relative function
tolerance value (at which the algorithm terminates) to 10−6.
Data normalization from Section II-B is applied to all methods.
We modified all the algorithms to output an upper triangular
sensor matrix (i.e., A = K), which can be done by RQ-
decomposing A without affecting the original performance.

For algorithms requiring L2-norm algebraic ellipsoid fitting,
we implemented an SVD-based method described in the work
of Kok and Schön [11]. For algorithms involving semidefinite
programming, we used Sturm’s SeDuMi solver [18] available
in the CVX library [29]. In addition, for algorithms requiring
nonlinear optimization, we employed the same LM [22], [24],
[25] algorithm to minimize the effect of other implementa-
tional factors.

All our algorithms requiring the use of robust kernels with
variable kernel widths (Huber, Cauchy, and GM) have set their
widths (τ ) to

√
3, assuming on average up to 1 unit error

per sensor axis for an inlier data point.

B. Simulation Study

We have designed our synthetic experiment to be able to
observe each algorithm’s performance across a range of noise
level and proportion of anomalies. To achieve this, we gen-
erated synthetic data with varying additive Gaussian noise
standard deviation (σ ) and proportion of outliers (η), ran each
algorithm from Table I on each experimental condition (σ, η)
until convergence, and reported each algorithm’s deviation in
model variables from ground truth. The entire process was
repeated multiple times to gain consistency in results. More
details are provided in the following.

1) Generating Synthetic Data per Experimental Condition:
Simulation data generation depends on the input experimental
conditions, namely, the Gaussian noise standard deviation σ
and the proportion of anomalies η.

First, a synthetic magnetometer model (K, b) mimicing
a real-world three-axis magnetometer is created using the
equations

K = σK

⎛
⎝I+ 0.1

⎡
⎣�k1 �k2 �k4

�k3 �k5
�k6

⎤
⎦

⎞
⎠ (35)

b = σb

⎛
⎝

⎡
⎣1

1
1

⎤
⎦+

⎡
⎣�b1

�b2
�b3

⎤
⎦

⎞
⎠ (36)
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Fig. 5. Results on synthetic data as a function the standard deviation (σ ) of additive white Gaussian noise. Average normalized sensor estimation error
(�[K, b] − [Kgt , bgt ]�F/�[Kgt , bgt ]�F , lower the better) is reported for each setting of σ when a specific proportion of outliers (η) exists. The top row
illustrates the performance of our method variants, whereas bottom compares our Cauchy version against baseline and state-of-the-art algorithms reviewed
in Table I. The left column presents the results when no anomaly is included, the middle column shows when η is 1%, and the right column corresponds
to η = 10%. (a) No outliers (ours). (b) 1% outliers (ours). (c) 10% outliers (ours). (d) No outliers (versus others). (e) 1% outliers (versus others). (f) 10%
outliers (versus others).

Fig. 6. Results on synthetic data as a function of number of outliers. Average normalized sensor estimation error (�[K, b] − [Kgt , bgt ]�F /�[Kgt , bgt ]�F ,
lower the better) is reported for each outlier proportion setting (η) on synthetic data. The standard deviation of additive Gaussian noise (σ ) is fixed at 1.0,
which is similar to that obtained from real magnetometer readings. (a) Between our algorithms. (b) Versus others.

where each �ki is drawn from N (0, 1). After inspecting
the average scale of sensor readings from a real strapdown
magnetometer, we have set σK to 100 and σb to 20.

Second, the associated sensor readings are generated using
the above sensor model (K, b) and a set of 1000 arbitrarily
sampled field directions on a unit 3-D sphere {x̂ j }, depicting
a magnetometer being randomly rotated for autocalibration. To
simulate real-world environment, sensor outputs {y j } are per-
turbed by additive white Gaussian noise of standard deviation
σ , and some heavy anomalous errors are added to a fraction
η of measurements to generate outliers. More specifically,
if the j th measurement m j is set as an inlier data point, it is
generated by the equation

m j = Kx̂ j + b+ ε j (37)

where (K, b) are the synthetic sensor variables, x̂ j ∈ S2 is
the field direction at time j , and ε j ∼ N (0, σI) is the white

Gaussian noise. On the other hand, if m j is set as an outlier,
then we additionally add a heavy perturbation term ξ such that

m j ← m j + ξ j (38)

where each element of ξ j ∈ R
3 is sampled from a uniform

distribution U(−ζ, ζ ) with ζ being the maximum scale of the
outlier noise. After probing through the scale of outliers from
real data, ζ is set to 100.

2) Experimental Procedure: For the synthetic experiments,
we varied the Gaussian noise standard deviation (σ ) between
0 and 2 in the sensor measurement unit and the proportion of
outliers (η) between 0% and 50%. Since the standard deviation
of noise estimated from outlier-free real data (M1 and M2 in
Table III) is 0.69 and the proportion of outliers across outlier-
inclusive data sets (MP1, MP2, MS1, MS2, and MS3 in
Table III) ranges between 2.6% and 6.9%, we believe that
these ranges are wide enough to cover real-world settings.
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We ran each of the algorithms in Table I on each experimen-
tal condition (σ, η) until convergence and reported deviation
of the estimated model variables (K, b) from ground truth
(Kgt, bgt). More specifically, we computed the normalized
model error defined as

�[K b] − [Kgt bgt]�F

�[Kgt bgt]�F
. (39)

We repeated the above procedure 25 times with different
synthetic data to obtain an average of normalized model devi-
ations. To keep things fair and consistent, we made sure that all
algorithms run on an identical set of synthetic measurements
at each experimental condition (σ, η).

3) Results on Synthetic Data: We have produced two rep-
resentative figures after carrying out the above experiments.

Fig. 5 shows each algorithm’s calibration accuracy as a
function of additive Gaussian noise standard deviation (σ )
given a specific proportion of outliers (η). The top row
consists of intraclass comparisons between our algorithms
each employing a different robust kernel, and the bottom
row presents interclass comparisons against other baseline and
state-of-the-art methods. The left column is with zero outliers
(heavy anomalies), the middle column is with 1% outliers, and
the right column is with 10% outliers all generated, as shown
in Section III-B1.

Fig. 6 shows each algorithm’s performance as a function of
outlier proportions (η) with σ = 1. Intraclass (between our
algorithm variants) and interclass comparisons are shown on
the left- and the right-hand sides, respectively.

1) Intraclass Comparisons: It can be seen from the top
row of Fig. 5 that the performance variations between
different robust kernels are not significant for up to
η = 10%, although Huber performs better for lower
proportion of outliers (η) and Cauchy performs better
for higher η. Fig. 6 shows much widening gap between
the accuracies achieved by Huber and Cauchy as η
increases. We believe that this is because Cauchy is
more robust than Huber, and it puts less emphasis on the
outlier-classified data points as shown in Fig. 2, leading
to improved accuracy as η increases.
On the other hand, the GM kernel, which is even more
robust than Cauchy, shows degrading accuracy in Fig. 5
as σ increases. We conjecture that this is due to the
Gaussian noise level (σ ) surpassing the size of the kernel
width (set to

√
3, i.e., optimal for σ = 1), meaning that

data points that are not actually anomalies are frequently
classified as outliers in this case, leading to a biased
model estimate that is less accurate. When σ is kept at
1.0, GM shows comparable performance to Cauchy for
a wide tested range of η in Fig. 6.
From Figs. 5 and 6, we determined that Cauchy performs
most stably overall across a range of outlier proportions
and Gaussian noise level and decided to select it as our
representative algorithm for comparison against other
methods.

2) Interclass Comparisons: The bottom row of Figs. 5
and 6(b) illustrates the performance comparison between
ours and other methods listed in Table I.

TABLE III

LIST OF REAL SEQUENCES OBTAINED USING AN IMU. THE NUMBER OF
OUTLIERS HAS BEEN APPROXIMATELY COMPUTED BY CALIBRATING

THE SENSOR USING OUR METHOD FROM SECTION II AND COUNT-
ING THE NUMBER OF OBSERVATIONS WITH ERRORS LARGER

THAN FIVE TIMES THE WIDTH OF THE EMPLOYED ROBUST
KERNELS (

√
3)

When no outlier is present (i.e., η = 0), Fig. 5(d) shows
similar results for all algorithms up to the Gaussian
noise standard deviation (σ ) of 1.2. Then, our Autocal
performs slightly worse for higher σ than other methods.
Again, similar to the reason for GM underperforming
for higher σ with extremely low proportion of outliers
(η), we believe that this is caused by the Gaussian noise
level (σ ) surpassing the width of the Cauchy kernel (

√
3,

optimal for σ = 1), making the algorithm to downweight
inlier data points with large noise, effectively yielding a
suboptimal solution.
However, when η increases to just 1%, our Autocal
outperforms other algorithms across tested range of
σ , as shown in Fig. 5(e). This difference becomes
more distinct as the outlier proportion increases to 10%
in Fig. 5(f). Fig. 6(b) verifies this phenomenon. Note
that the choice of robust kernel does not change the
ranking of our algorithm, and this clearly demonstrates
that robust optimization helps to retrieve a more accurate
sensor model even in the presence of just a few outliers.
Aside from our Autocal, it is worth noting that Papafotis
and Sotiriadis’ MAGICAL performs better than other
L2-norm-based methods. This indicates that minimizing
the sensor estimation error yields a more accurate model
than when minimizing either algebraic or geometric
ellipsoid fitting errors.

3) Ablation Study: In Figs. 5 and 6, we have also included
the result of sole L1-norm ellipsoid fitting without
refinement for ablation study. When comparing between
L1-norm ellipsoid fitting and our L1-norm two-step
algorithm, our method shows improvement over the
ellipsoid fitting results, especially as the proportion
of outliers (η) increases. This again demonstrates that
minimizing a geometrically meaningful error distance is
important for improving solution quality.

C. Real Experiments

We have also compared the performance of our algorithms,
baselines, and state of the arts on a set of real IMU data.
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TABLE IV

DEVIATION OF SENSOR VARIABLES (K, b) FROM THE REFERENCE MODEL (Kref , bref ) OBTAINED BY SELF-CALIBRATING ON THE M1 SEQUENCE (A1 FOR
ACCELEROMETERS). NORMALIZED SENSOR DEVIATION ERROR �[K, b] − [Kref , bref ]�F /�[Kref , bref ]�F IS REPORTED

TABLE V

AVERAGE SENSOR ESTIMATION ERROR (DEFINED IN SECTION III-C2) ACHIEVED BY DIFFERENT CALIBRATION ALGORITHMS. ON EACH DATA SET,
EACH ALGORITHM LEARNS A MODEL (K, b), WHICH IS THEN TESTED ON THE OUTLIER-FREE M1 SEQUENCE (A1 FOR ACCELEROMETERS)

FROM TABLE III

1) Data Collection: We set up an IMU sensor
(InvenSenseTM MPU 9250) and obtained raw data via
I2C communication using an arduino microprocessor. The
sensor board was moved in arbitrary directions to obtain a
set (track) of magnetometer readings.

We changed the surrounding environment to produce mea-
surement tracks with and without outliers. First, we obtained
two data tracks, M1 and M2, each of which comprises inlier
data points only. Second, we retrieved two sets of sensor read-
ings, MP1 and MP2, moving toward and away from a mobile
phone to incur magnetic disruptions for inducing anomalies.
Finally, we took three measurement sequences near a stapler,
denoted as MS1–MS3 respectively. These also contain outliers
due to arbitrary movements around a ferromagnetic object.

We also fetched accelerometer readings to demonstrate
our algorithm’s applicability in self-calibration of three-axis
accelerometers. Again, we obtained two inlier-only data tracks,
A1 and A2, and two outlier-inclusive tracks, AO1 and AO2,
triggered by sudden accelerations during sensor movements.
As our accelerometer readings are about 100 times bigger than
those of the magnetometer, we have divided accelerometer
values by 100 (assuming similar signal-to-noise ratio).

More details about each sequence can be found in Table III.

2) Experimental Procedure: As it is difficult to obtain
ground truths for real data, we compared two quantities,
namely, the normalized model deviation error (the same as the
metric used in Section III-B3) and average sensor estimation
error for checking algorithm precision and accuracy. Both
metrics are explained in the following.

1) Normalized Model Deviation Error (Precision): We
obtained each algorithm’s reference model (Kref , bref )
by running it on an inlier-only data sequence M1.
Then, its sensor model estimates on other data sets
were compared against the reference by computing the
normalized model error (also defined in (39)) for each
data set as

�[K b] − [Kref bref ]�F

�[Kref bref ]�F
. (40)

Above measures how deviated each model estimate
(from potentially outlier-existing data) is from the inlier-
only reference data, implying algorithm precision.

2) Average Sensor Estimation Error (Accuracy): For each
algorithm on each data set, we estimated the correspond-
ing sensor model (K, b) and checked how well it fits the
inlier-only sequence M1 by comparing the the average
sensor estimation error. For this purpose, we first derived
a set of 3-D field directions minimizing the sum of
squared sensor estimation errors on M1, i.e., find field
vectors solving

arg min
{x̂ j }

N∑
j=1

�Kx̂ j + b−m j�22 (41)

given a model (K, b). (No robust kernel
is included as M1 is outlier-free.) Then,
the average sensor estimation error is computed as
((1/N)

∑N
j=1�Kx̂ j + b−m j�22)1/2. In terms of model

learning, this can be viewed as computing the test accu-
racy of each algorithm after training the sensor model.
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Fig. 7. Visualizations of the sensor models outputted by individual algorithms on the MS1 sequence from Table III. The top row shows each algorithm’s
ellipsoid model along with the sensor measurements, where 442 blue dots denote inlier data points and 12 red crosses are anomalies. The L2-norm-based
methods [see Fig. 7(a)–(d)] try their best to fit an ellipsoid across both inliers and outliers, leading to skewed models. On the other hand, our algorithm
in Fig. 7(e) utilizes a robust kernel to downweight outliers, yielding a solution that is closer to the model obtained with inlier data points only. The bottom
row illustrates the precalibration/postcalibration performance of the tested algorithms by plotting field size per data point when the top row’s models are tested
on the outlier-free M1 data set. These show a flat green curve close to 1 does not necessarily imply good calibration, and thus, one should always consult the
ellipsoid fitting results. (a) Dorveaux et al. (b) Kok and Schön. (c) Vasconcelos et al. (d) MAGICAL. (e) Ours (Cauchy).

3) Results on Real Data: Normalized model deviation
errors and average sensor estimation errors explained in
Section III-B2 can be found in Tables IV and V, respectively.
Numbers in bold represent the winning algorithms.

On the inlier only data sets (M2 and A2), the differences
in accuracy and precision between our family of algorithms
and state-of-the-art L2-based method (MAGICAL [7]) are
comparatively small. This shows that our method can yield
accurate model values when no or few outliers are present.

For the outlier-existing sequences (MP1, MP2, MS1, MS2,
MS3, AO1, and AO2), our Autocal family of algorithms per-
forms substantially better in terms of both accuracy and pre-
cision than other L2-norm minimizing methods from Table I.
Our GM kernel implementation wins on most of the sequences,
but its performance does vary from track to track, and we
confirm the simulation result that the kernel is sensitive to the
distribution of measurement noise. While the Cauchy kernel
version only wins on AO2, its variation is smaller than other
Autocal variants, producing more consistent models across all
data tracks and thus recommended.

On a minor note, it is interesting to observe in Table IV that
the algorithms of Dorveaux et al. and Vasconcelos et al. and
MAGICAL sometimes produce completely inaccurate results.
This is more severe for Vasconcelos et al.’s method in MP1,
MP2, and MS1. To look for the cause, we have plotted
resultant ellipsoids from the sensor models (K, b) outputted
by individual algorithms in Figs. 1 and 7. This shows that
the L2-norm minimizing algorithms overall yield skewed and
badly scaled ellipsoids for the real tracks tested in Table III.
We have found that this is due to several of these tracks
comprising inlier points mostly only on one side of the
ellipsoid, encouraging L2-based algorithms to yield a long and
skewed ellipsoid in an attempt to fit both inliers and outliers
at the same time.

We investigated further on the above issue by running
each L2-norm minimizing algorithm on a combined track
comprising M1 and MP1, which covers more surface area of
the ellipsoid. All but Dorveaux et al.’s method have reached
feasible solutions with less than 1.5% normalized deviation
and around 0.70 mean sensor estimation error. (Further analy-
sis on Dorveaux et al.’s method showed that its failure on real
data is due to poor initialization, and a good initial solution

TABLE VI

AVERAGE ALGORITHM RUNTIMES ON REAL MAGNETOMETER DATA SETS
(MP1, MP2, MS1, MS2, AND MS3)

provided by L1 ellipsoid fitting yields a better result.) This
introduces another need for robust autocalibration in practice
as the self-calibration motion may not be completely arbitrary,
inflicting a detrimental impact on the L2-norm-based methods.

As a final remark, Fig. 7 shows incorrect badly scaled
models are often not in the postcalibration plots (field size
versus time step) produced by these skewed models [see
Fig. 7(b) and (c)]. This is because the size of the field obtained
by computing K−1(m j − b) can always be near 1 if the
badly scaled ellipsoid triggers two conditions, �K−1m j�2 �
�K−1b�2 and �K−1b�2 = 1. Hence, one should always
prioritize the ellipsoid visualization for model validation.

4) Algorithm Runtimes: The average runtimes of individual
algorithms are reported in Table VI. Since our implementa-
tion has not exploited all the efficient techniques available,
we believe that there is a room for further improvement in
runtime.

Despite higher accuracy and precision of our method,
the family of proposed algorithms is slower than other L2-
norm-based algorithms except for Kok and Schön’s method.
The Cauchy, GM, and Huber kernels are faster than L1.
This is potentially due to the ill-conditioned nature of the L1
kernel having a large gradient near-zero error preventing early
convergence.

We have found that Calafiore’s convex L1-norm ellipsoid
fitting algorithm [12] can benefit from MATLAB vectorization,
yielding a factor of ten speedup and decreasing our method’s
runtime. Nevertheless, it still requires more computation power
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than most L2-norm minimizing methods. Improving the speed
of robust ellipsoid fitting is for future work.

IV. CONCLUSION

In this work, we have proposed a robust autocalibration
method that can be applied to a conventional three-axis
magnetometer and accelerometer. The method works in two
steps, initially estimating sensor variables through L1-norm
ellipsoid fitting of measurement data, followed by refinement
of model variables via robust nonlinear least-squares mini-
mization of sensor estimation errors. We have demonstrated
that our method achieves higher calibration accuracy and
precision in the presence of magnetic disturbances. This shows
that consistent robust handling of outlier data as well as
minimizing sensor estimation error is required to improve
calibration accuracies in simulation and in practice. We hope
future work would focus on devising a simpler and more
efficient robust self-calibration algorithm for magnetometers
without compromising accuracy.
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